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Background

Jd Ni-nitrides and their heterostructures are particularly promising due to
their high binding capabllities for the adsorbates (atomic hydrogen,
protons, or water molecules) and relatively low electrical resistance.[1-2]

 Nitrides are usually synthesized by self-propagating high-temperature
synthesis with nitridation at >400 °C In the presence of hazardous
chemicals.[3-4]}

» We report the use of an industrially-mature and eco-friendly magnetron
sputtering method to directly synthesize NIi;N/NI with a triangular
oyramidal structure enriched with N-vacancies.|5
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A Nitrogen plasma includes molecular, atomic, and ionic nitrogen (Nt*and

N2+) species which lead to the formation of N-vacancies. d The application of NISN/NI as a cocatalyst on Si photocathodes

produces an excellent applied bias photon-to-current efficiency of

d Using DFT calculations, the presence of N-vacancies under 9.3% and over 50 h stability.
electrochemical working conditions which effectively enhance the
adsorption of water molecules and improve the adsorption-desorption
behavior of intermediate species, resulting in superior HER activity
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d The demonstration of earth-abundant Ni;N/Ni catalysts with HER performance comparable to
that of Pt, and directly synthesized using magnetron sputtering, 1.e., without the need of a high
temperature nitridation process, provides promise for application in electrochemical and
photoelectrochemical solar hydrogen production.
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