Novel Substrate-Agnostic Approach in Preparing High-Performance Regenerative Water Splitting (Photo)electrodes Joshua Zheyan Soo*,1, Bikesh Gupta1, Asim Riaz2, Chennupati Jagadish1,3, Hark Hoe Tan1,3, Siva Karuturi*,2 ## Background - Green H₂ technologies (*e.g.*: electrolysis) not widely adopted in industry – electrocatalysts remain a key development bottleneck - Current issues with existing water splitting electrocatalysts: - ➤ Low performance in oxygen evolution reactions (OER) ¹ - ➤ Synthesized using complex, non-scalable chemical processes ² - ➤ Require chemically durable and conductive substrates cost-prohibitive - Our solution: - ➤ Deposit multimetallic hydroxides catalysts *via* **surface corrosion**³ on plated metal films ¹Liang, Q. et al., J. Phys. Energy, 3, 2 (2021) ²Dionigi, F. et al., Adv. Energy Mater., 6, 23 (2016) ³Liu, Y. et al., Nat. Commun., 9, 2609 (2018) ## Methodology Synthesis procedure of the solution-corroded NiFe layered double hydroxide (LDH) catalyst on a substrate #### Results Catalyst microstructure & composition Microscopy images of Ni-plated surface film Substrate-agnostic & regenerative OER **270 305 267 293 293** Overpotential of Ni/Si 295 **Substrate** 618 305 310 OER overpotentials of NiFe LDH on: (top) Various substrates, (bottom) After each deposit- etch processes 609 10 mA/cm² 50 mA/cm² performance Overpotential (mV) 700 **500** 400 Cross-section of NiFe LDH film surface - 11-40-nm-thick amorphous NiFe LDH film on surface - Structural integrity of Ni film intact after corrosion # Decoupled NiFe LDH/GaAs photoanode with record device efficiency* (Left) Decoupled GaAs PV/NiFe LDH design, (Right) Photoresponse with corresponding half-cell efficiency # High-current stability in electrolyser (Left) Alkaline electrolyser with Pt (cathode) and NiFe LDH (anode), (Right) Chronopotentiometry of electrolyser device at 260 mA/cm² with (inset) corresponding linear sweep voltammetry ### Conclusion - Key messages from our earth-abundant catalyst deposition method: - ➤ Substrate-agnostic - ➤ Has **regenerative** ability - Capable of record photoelectrode efficiency - > Excellent stability at high current densities - Expected to be industry-compatible for large-scale green H₂ production ## Acknowledgements We would like to acknowledge funding support by the Australian Government through the Australian Renewable Energy Agency (ARENA) and the Australian Research Council (ARC); and the use of facilities and technical support from the ACT Node of the Australian National Fabrication Facility (ANFF). ## **Further Information** This work has been published as part of a special issue of Chemistry of Materials: "John Goodenough at 100" (link in QR code). A provisional patent application is also filed with IP Australia (Appl. number: 2021903393).