Novel Substrate-Agnostic Approach in Preparing High-Performance Regenerative Water Splitting (Photo)electrodes

Joshua Zheyan Soo*,1, Bikesh Gupta1, Asim Riaz2, Chennupati Jagadish1,3, Hark Hoe Tan1,3, Siva Karuturi*,2

Background

- Green H₂ technologies (*e.g.*: electrolysis)
 not widely adopted in industry –
 electrocatalysts remain a key development
 bottleneck
- Current issues with existing water splitting electrocatalysts:
 - ➤ Low performance in oxygen evolution reactions (OER) ¹
 - ➤ Synthesized using complex, non-scalable chemical processes ²
 - ➤ Require chemically durable and conductive substrates cost-prohibitive
- Our solution:
 - ➤ Deposit multimetallic hydroxides catalysts *via* **surface corrosion**³ on plated metal films

¹Liang, Q. et al., J. Phys. Energy, 3, 2 (2021) ²Dionigi, F. et al., Adv. Energy Mater., 6, 23 (2016) ³Liu, Y. et al., Nat. Commun., 9, 2609 (2018)

Methodology

Synthesis procedure of the solution-corroded NiFe layered double hydroxide (LDH) catalyst on a substrate

Results

Catalyst microstructure & composition

Microscopy images of Ni-plated surface film

Substrate-agnostic

& regenerative OER

270 305 267 293 293

Overpotential of Ni/Si

295

Substrate

618

305

310

OER overpotentials of NiFe LDH

on: (top) Various substrates,

(bottom) After each deposit-

etch processes

609

10 mA/cm²

50 mA/cm²

performance

Overpotential (mV)

700

500

400

Cross-section of NiFe LDH film surface

- 11-40-nm-thick amorphous NiFe LDH film on surface
- Structural integrity
 of Ni film intact
 after corrosion

Decoupled NiFe LDH/GaAs photoanode with record device efficiency*

(Left) Decoupled GaAs PV/NiFe LDH design, (Right)
Photoresponse with corresponding half-cell efficiency

High-current stability in electrolyser

(Left) Alkaline electrolyser with Pt (cathode) and NiFe LDH (anode), (Right) Chronopotentiometry of electrolyser device at 260 mA/cm² with (inset) corresponding linear sweep voltammetry

Conclusion

- Key messages from our earth-abundant catalyst deposition method:
 - ➤ Substrate-agnostic
 - ➤ Has **regenerative** ability
- Capable of record photoelectrode efficiency
- > Excellent stability at high current densities
- Expected to be industry-compatible for large-scale green H₂ production

Acknowledgements

We would like to acknowledge funding support by the Australian Government through the Australian Renewable Energy Agency (ARENA) and the Australian Research Council (ARC); and the use of facilities and technical support from the ACT Node of the Australian National Fabrication Facility (ANFF).

Further Information

This work has been published as part of a special issue of Chemistry of Materials: "John Goodenough at 100" (link in QR code).

A provisional patent application is also filed with IP Australia (Appl. number: 2021903393).

